Effects of Low Versus High Load Resistance Training – Research Review

Schoenfeld BJ et. al. Effects of Low Versus High Load Resistance Training on Muscle Strength and Hypertrophy in Well-Trained Men.J Strength Cond Res. 2015 Apr 3. [Epub ahead of print]

Abstract

The purpose of this study was to compare the effect of low- versus high-load resistance training (RT) on muscular adaptations in well-trained subjects. Eighteen young men experienced in RT were matched according to baseline strength, and then randomly assigned to 1 of 2 experimental groups: a low-load RT routine (LL) where 25-35 repetitions were performed per set per exercise (n = 9), or a high-load RT routine (HL) where 8-12 repetitions were performed per set per exercise (n = 9). During each session, subjects in both groups performed 3 sets of 7 different exercises representing all major muscles. Training was carried out 3 times per week on non-consecutive days, for 8 total weeks. Both HL and LL conditions produced significant increases in thickness of the elbow flexors (5.3 vs. 8.6%, respectively), elbow extensors (6.0 vs. 5.2%, respectively), and quadriceps femoris (9.3 vs. 9.5%, respectively), with no significant differences noted between groups. Improvements in back squat strength were significantly greater for HL compared to LL (19.6 vs. 8.8%, respectively) and there was a trend for greater increases in 1RM bench press (6.5 vs. 2.0%, respectively). Upper body muscle endurance (assessed by the bench press at 50% 1RM to failure) improved to a greater extent in LL compared to HL (16.6% vs. -1.2%, respectively). These findings indicate that both HL and LL training to failure can elicit significant increases in muscle hypertrophy among well-trained young men; however, HL training is superior for maximizing strength adaptations.

Background

For years, it’s been taken basically as an article of faith that the best way to stimulate muscle growth is with relatively heavy loads for lower repetitions.  The hypertrophy zone is usually defined as 8-12 (5-15 is better) repetitions per set with heavy weights.  Muscle fibers are recruited in an order according to the size principle with only the high threshold Type II muscle fibers (the ones most responsible for growth requiring heavy loads of 80-85% for maximal recruitment.

(more…)

Effects of different volume-equated resistance training loading strategies on muscular adaptations in well-trained men – Research Review

Schoenfeld BJ et. al. “Effects of different volume-equated resistance training loading strategies on muscular adaptations in well-trained men.” J Strength Cond Res. 2014 Apr 7. 

Regimented resistance training has been shown to promote marked increases in skeletal muscle mass. Although muscle hypertrophy can be attained through a wide range of resistance training programs, the principle of specificity, which states that adaptations are specific to the nature of the applied stimulus, dictates that some programs will promote greater hypertrophy than others. Research is lacking, however, as to the best combination of variables required to maximize hypertophic gains. The purpose of this study was to investigate muscular adaptations to a volume-equated bodybuilding-type training program versus a powerlifting-type routine in well-trained subjects. 17 young men were randomly assigned to either an HT group that performed 3 sets of 10RM with 90 seconds rest or an ST group that performed 7 sets of 3RM with 3 minutes rest. After 8 weeks, no significant differences were noted in muscle thickness of the biceps brachii. Significant strength differences were found in favor of ST for the 1RM bench press and a trend was found for greater increases in the 1RM squat. In conclusion, this study showed both bodybuilding- and powerlifting-type training promote similar increases in muscular size, but powerlifting-type training is superior for enhancing maximal strength.

Introduction

Ok, so assuming you made it through the Categories of Weight Training series re-run/re-write, you hopefully saw that there is a general belief/schema whereby different loading parameters (intensity, volume, etc.) generate differential results in terms of muscular endurance, muscle growth, muscle strength.

(more…)

The Dieters Paradox – Research Review

Chernev A.  The Dieters Paradox.  Journal of Consumer Psychology.  (2001) 21: 178-183.

Abstract
Despite the vast public policy efforts to promote the consumption of healthy foods and the public’s growing concern with weight management, the proportion of overweight individuals continues to increase. An important factor contributing to this obesity trend is the misguided belief about the relationship between a meal’s healthiness and its impact on weight gain, whereby people erroneously believe that eating healthy foods in addition to unhealthy ones can decrease a meal’s calorie count. This research documents this misperception, showing that it is stronger among individuals most concerned with managing their weight—a striking result given that these individuals are more motivated to monitor their calorie intake. This finding has important public policy implications, suggesting that in addition to encouraging the adoption of a healthier lifestyle among overweight individuals, promoting the consumption of healthy foods might end up facilitating calorie overconsumption, leading to weight gain rather than weight loss.

.

Background

In introducing today’s paper, I am reminded of an old joke/quip to the effect that “All that separates man from the animals is our ability to rationalize.”   I’d add “And accessorize” but that’s neither here nor there.  But the reality is that humans are able to do a wide variety of mental gymnastics in how they approach life.  Effectively, we appear to be slave to what psychologists call cognitive biases, ways in which we think about the present, past, future or ourselves that often lead us to make some fascinatingly bad choices.  This is a topic that many recent books has discussed in a variety of contexts.

(more…)

Strength and Neuromuscular Adaptation Following One, Four and Eight Sets

Marshall PW, McEwen M, Robbins DW. Strength and neuromuscular adaptation following one, four, and eight sets of high intensity resistance exercise in trained males. Eur J Appl Physiol. 2011 Mar 31. 

The optimal volume of resistance exercise to prescribe for trained individuals is unclear. The purpose of this study was to randomly assign resistance trained individuals to 6-weeks of squat exercise, prescribed at 80% of a 1 repetition-maximum (1-RM), using either one, four, or eight sets of repetitions to failure performed twice per week. Participants then performed the same peaking program for 4-weeks. Squat 1-RM, quadriceps muscle activation, and contractile rate of force development (RFD) were measured before, during, and after the training program. 32 resistance-trained male participants completed the 10-week program. Squat 1-RM was significantly increased for all groups after 6 and 10-weeks of training (P < 0.05). The 8-set group was significantly stronger than the 1-set group after 3-weeks of training (7.9% difference, P < 0.05), and remained stronger after 6 and 10-weeks of training (P < 0.05). Peak muscle activation did not change during the study. Early (30, 50 ms) and peak RFD was significantly decreased for all groups after 6 and 10-weeks of training (P < 0.05). Peak isometric force output did not change for any group. The results of this study support resistance exercise prescription in excess of 4-sets (i.e. 8-sets) for faster and greater strength gains as compared to 1-set training. Common neuromuscular changes are attributed to high intensity squats (80% 1-RM) combined with a repetition to failure prescription. This prescription may not be useful for sports application owing to decreased early and peak RFD. Individual responsiveness to 1-set of training should be evaluated in the first 3-weeks of training.

Background

There has been a literally decades old argument going on regarding the optimal volume of strength training (and here I’m primarily focusing on the argument about doing a single set vs. multiple sets) for various goals including strength, hypertrophy and the training of athletes.

(more…)

Antioxidant and Vitamin D Supplements for Athletes: Sense or Nonsense? – Research Review

Powers S et. al. Antioxidant and Vitamin D supplements for athletes: Sense or nonsense? J Sports Sci. 2011  Aug 11. [Epub ahead of print]

The idea that dietary supplements can improve athletic performance is popular among athletes. The use of antioxidant supplements is widespread among endurance athletes because of evidence that free radicals contribute to muscle fatigue during prolonged exercise. Furthermore, interest in vitamin D supplementation is increasing in response to studies indicating that vitamin D deficiency exists in athletic populations. This review explores the rationale for supplementation with both antioxidants and vitamin D and discusses the evidence to support and deny the benefits of these dietary supplements. The issue of whether athletes should use antioxidant supplements remains highly controversial. Nonetheless, at present there is limited scientific evidence to recommend antioxidant supplements to athletes or other physically active individuals. Therefore, athletes should consult with their health care professional and/or nutritionist when considering antioxidant supplementation. The issue of whether athletes should supplement with vitamin D is also controversial. While arguments for and against vitamin D supplementation exist, additional research is required to determine whether vitamin D supplementation is beneficial to athletes. Nevertheless, based upon the growing evidence that many athletic populations are vitamin D deficient or insufficient, it is recommended that athletes monitor their serum vitamin D concentration and consult with their health care professional and/or nutritionist to determine if they would derive health benefits from vitamin D supplementation.

Background

Supplements for athletic performance have been a part of the landscape for decades and athletes are always looking for an edge in terms of either promoting adaptations to training, recovery, or outright performance.    And while many in the field tend to think of me as anti-supplement, this really sort of misses my issue with supplements.  Because I’m not anti-supplement; rather I’m simply anti-bs.

(more…)